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Abstract

Machine learning has facilitated significant advancements across vari-
ous robotics domains, including navigation, locomotion, and manipu-
lation. Many such achievements have been driven by the extensive use
of simulation as a critical tool for training and testing robotic systems
prior to their deployment in real-world environments. However, simu-
lations consist of abstractions and approximations that inevitably in-
troduce discrepancies between simulated and real environments, known
as the reality gap. These discrepancies significantly hinder the success-
ful transfer of systems from simulation to the real world. Closing this
gap remains one of the most pressing challenges in robotics. Recent
advances in sim-to-real transfer have demonstrated promising results
across various platforms, including locomotion, navigation, and manip-
ulation. By leveraging techniques such as domain randomization, real-
to-sim transfer, state and action abstractions, and sim-real co-training,
many works have overcome the reality gap. However, challenges persist,
and a deeper understanding of the reality gap’s root causes and solu-
tions is necessary. In this survey, we present a comprehensive overview
of the sim-to-real landscape, highlighting the causes, solutions, and
evaluation metrics for the reality gap and sim-to-real transfer.
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1. Introduction
Simulation holds great potential for robot learning, benchmarking and large-scale data
collection in robotics due to its scalability, safety, and efficiency. Robots can be safely
trained in simulation before being deployed to the real world. Algorithms can be compared
against each other in simulation over multiple simulated scenarios. Through simulation,
massive amounts of data can be collected from robots performing complex tasks at a fraction
of the cost compared to the real world. However, the gap between simulated and real-
world environments often stands in the way of fully leveraging its potential. Bridging
the gap between simulation and the real world has become one of the most critical and
long-standing challenges in robotics. Overcoming this challenge holds the potential to
accelerate progress in robotics similar to what has been achieved in other computational
fields. For example, sustained progress observed in the natural language processing and
computer vision communities would not have been possible without significant effort in
the development of large training and benchmarking datasets (1, 2). In contrast, robotics
still lags behind in these aspects. One reason for this is that static test datasets cannot
reflect the complexity of perceiving and acting in the real world. Instead, most robotics
problems require training and benchmarking in interactive environments. While training
in the real world has the benefit of making sure that systems are trained and tested in
realistic settings, complex real-world tasks are difficult to scale and replicate with sufficient
reproducibility. In addition, data collection in the real world is bottlenecked by multiple
factors such as hardware cost, human dependence, and difficulty of automation. Simulation
offers an affordable alternative for these challenges, making it an invaluable tool for data
collection, benchmarking, and building various components of typical robotic pipelines,
such as perception, planning, learning, and control. Namely, for benchmarking, simulation
ensures the repeatability of experiments, which is impossible in real-world robotics systems
due to their stochastic nature. For data generation, simulation provides an efficient approach
that can leverage multiple robots operating faster than in real-time and in a parallelized
manner.

Simulation attempts to replicate physical reality with mathematical abstractions, mod-
els, and approximations. This means that there are no perfect simulators, and therefore
there is always a difference from the real world, which we call reality gap. While it is a
common misconception to talk about this gap as a single element, the reality gap consists
of a large number of sub-gaps resulting from the simulation’s failure to replicate various
physical real-world mechanisms and phenomena accurately. As a consequence, transferring
any sort of behavior observed in simulation to a real-world environment can be extremely
challenging. For instance, transferring control policies designed or learned in simulation is
not trivial (9). Due to the differences between the simulated and the real environments,
policies obtained in simulation could achieve great performance in simulation, simply by
abusing modeling inaccuracies and simulator-specific corner cases. Hence, the successful
transfer of such policies is not guaranteed and can even be dangerous to the robot, its
surroundings, and any human in its proximity.

Despite these challenges, recent progress in robot learning has shown great promise
in sim-to-real transfer, where control policies learned in a simulation are transferred to a
similar real-world environment, and multiple techniques have been proposed to overcome
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Figure 1
The reality gap is the difference between a simulated and real environment in aspects related to
dynamics, perception & sensing, actuation & control, and system design. By carefully designing
these modules, the gap can be reduced to a reasonable size. Sim-to-real as well as real-to-sim
transfer require methods that can carefully overcome the remaining reality gap. Figures are
adapted from successful sim-to-real applications in various robotics domains (3, 4, 5, 6, 7, 8).

the reality gap for different robotic platforms (10, 11, 12, 13, 3, 14, 6, 5, 8, 15). Besides
improvements in physics engines and rendering quality, simulation technology progressed
to meet the demands of the robot-learning community by following the deep learning trend
of massive parallelization and large-scale data collection. Modern simulators can leverage
GPU parallelization to simulate thousands of robots simultaneously (16, 17, 18, 19). This
ability to efficiently parallelize simulations has led to significant breakthroughs in the field,
particularly in locomotion (6, 20), agile flight (21, 8), and manipulation (3, 14, 22, 23). In
locomotion, highly parallelized simulation enabled learning very robust quadruped locomo-
tion across challenging terrains (6) and, more recently bipeds control (24, 7). Furthermore,
sim-to-real transfer has been used for dexterous manipulation as well as other various single-
arm (25, 5) and dual-arm tasks (26), ranging from simple 3D reaching to more complex
and contact-rich tasks such as table-top rearrangement (25) and assembly (26, 5). Addi-
tionally, sim-to-real transfer played a key role in learning agile quadrotor control policies
that outperformed human champions in drone racing (21, 8).

However, sim-to-real still faces many challenges, such as photorealistic rendering (more
generally, sensor modeling) and simulation of complex dynamics such as contacts, deforma-
tions, and material variations. To further progress sim-to-real transfer and understand its
limitations, a common and structured understanding of the problem is necessary. Ideally,
such an understanding should go all the way from the roots of the problem to the existing
and needed solutions to overcome them.

In this survey, we provide a comprehensive overview of the sim-to-real landscape for
robot learning. We dissect the problem into atomic components, identify the sources of the
reality gap and the symptoms they cause, and provide metrics and solutions to understand
these problems and alleviate them in practice. Our objective is to boost the understanding
of the problem by providing a guide for researchers and practitioners. We first introduce the
problem, its notation and its theory in section 2. In section 3, we identify and exhaustively
list the different causes of the reality gap. We then survey existing solutions and metrics for
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sim-to-real transfer in section 4 and section 5, respectively. Finally, in section 6, we discuss
open problems and an outlook for future research on this topic.

2. Preliminaries
In this section, we formalize the concepts and definitions required to understand and char-
acterize the reality gap as well as sim-to-real transfer.

2.1. States, Observations, and Actions
We first introduce a general mathematical model for robot systems that receive observations
of the world using their sensors and make decisions that maximize a particular objective.
We formulate this decision-making problem as a Partially Observable Markov Decision
Process (POMDP) 1. A POMDP is defined as the tuple M = (S, A, T , R, Z, O, γ), where
S ⊆ Rn denotes the state space encompassing all feasible configurations of the robot and its
environment. A ⊆ Rm is the action space comprising all control commands the robot can
execute; T : S × A → S denotes the transition dynamics, describing how the state evolves
given the current state st at time t and a given action at; R : S × A → R is the reward
function encoding the task objective; Z ⊆ Rh is the observation space, and O : S →Z is the
sensor (observation) model that maps the latent state to an observation zt; finally, γ ∈ [0, 1)
is the discount factor, representing the relative importance of future rewards with respect
to immediate rewards. The agent maintains a belief bt ∈ B(S), a probability distribution
over states, updated from the history of past actions and observations. Its goal is to learn
a policy π : B(S)→A that maximizes the expected discounted return

π∗ = arg max
π

E

[
∞∑

t=0

γt R
(
st, π(bt)

)]
, 1.

where R(st, π(bt)) is the reward the agent receives when in belief bt acting under the policy
π. In practice, sim-to-real work often represents bt by a compact feature vector extracted
directly from raw observations such as camera images and proprioceptive signals.

2.2. Simulation
A simulation is a computational approximation of the real world. If we denote the real
world dynamics perfectly capturing the behavior of the real world system as Tr(st+1|st, at),
and the real observation model Or(zt|st), a simulation approximates the real world dy-
namics and observation model by employing physical models derived from first principles,
numerical integration, and approximations to reduce complexity and computational cost,
such that Ts(st+1|st, at) ≈ Tr(st+1|st, at) and Os(zt|st) ≈ Or(zt|st), ∀ st ∈ S, at ∈ A. A
perfect simulator aims to minimize the discrepancy between the simulated and real world
dynamics as well as the geometric structure and the simulated observations. However, per-
fect fidelity is impractical and computationally infeasible in realistic robotic scenarios due
to the inherent complexity of physical effects (friction, noise, sensor latency, etc).

1When the sensors provide the full state without noise (e.g. in simulation with privileged infor-
mation) observations are equivalent to states and the formulation collapses to a Markov Decision
Process (MDP).

4 Aljalbout et al.



2.3. Reality Gap
We distinguish between the reality gap characterizing the difference between the simulated
and the real environments, and the performance gap, characterizing the difference in per-
formance in simulation and the real world for a given policy.

The reality gap is the gap between the simulated POMDP Ms and the real one Mr. It
is mainly composed of the dynamics and perception gaps,

Gdyn(Ms, Mr) = E(s,a)∼Mr [D (Tsim(· | s, a) ∥ Treal(· | s, a))]
Gperc(Ms, Mr) = Es∼Sr [D (Osim(· | s) ∥ Oreal(· | s))] ,

2.

where D is a measure of divergence or dissimilarity, Treal, Tsim and Oreal, Osim refer to
transition dynamics and observation models with subscripts real and sim indicating the
real and simulated environments.

The performance gap is the difference in performance of a given policy when executed
in simulation versus in the real world. Let π : B(S) → A denote a policy trained in an
environment M, where B(S) is the belief space. Starting from an initial state s0, the closed-
loop trajectory τ = (s0, z0, a0, s1, z1, a1, . . . , sT , zT ) evolves under transition dynamics T
and observation model O. The expected discounted return of π in environment M is

JM(π) = Eτ∼p(τ |π,M)

[
T∑

t=0

γtR(st, π(bt))

]
. 3.

The performance gap Gperf(Ms, Mr, π) for the policy π is formally defined as the absolute
difference between its expected performance in the simulated and real environments:

Gperf(Ms, Mr, π) = |JMs (π) − JMr (π)| . 4.

Minimizing Gperf(Ms, Mr, π) ensures effective transfer and robust performance from sim-
ulation to real-world scenarios. It is important to note that exact replication of real-world
dynamics (i.e., elimination of Gdyn) and observation models (i.e., elimination of Gobs) in
a simulator is not practically achievable nor required to achieve successful sim-to-real gap
minimization. Successful transfer can still occur if the policy is robust against differences
between the environments. Therefore, the objective of sim-to-real transfer is

π∗ = min
π

Gperf(Ms, Mr, π). 5.

3. Sources of Reality Gap
In this section we elaborate on the differences in dynamics (Section 3.1), perception (Sec-
tion 3.2), actuation (Section 3.3), and system design (Section 3.4), all contributing to the
sim-to-real gap.

3.1. Dynamics
One of the most important causes of the reality gap is the dynamics of the system. The
dynamics gap Gdyn(Ms, Mr) is defined by sim-to-real discrepancies in the transition model
T in the POMDP formulation. When creating a simulator, many decisions and simplifica-
tions are made about what to model and what to leave out, how to model dynamics, what

www.annualreviews.org • The Reality Gap in Robotics 5



Perception & Sensing
Sec. 3.2

Sensor
model

Env.
Repres.

Sensor
Noise

Model
Repres.

Actuation & Control
Sec. 3.3

Actuator
Models

Low-level
Control

Power
Electronics

Dynamics
Sec. 3.1

Integrators

Parameterization

Chaos

Robot
Modeling

Unmodelled
Effects

System
Design
Sec. 3.4

Safety,
Mechanism

Communication

POMDP

Figure 2
Illustration of the different sources of the reality gap in the real world (left) and simulation (right).

parameters best approximate the real world, and how to represent continuous phenomena in
discrete computations. These decisions and assumptions can lead to a plethora of dynamics
gaps. A policy trained in a simulation with inaccurate dynamics may learn to exploit these
inaccuracies, leading to a potential performance drop in the real world. In the following,
we list the most important sources.

3.1.1. Modeling. Simulators attempt to replicate real-world dynamics with models. The
models represent various aspects of physics, such as rigid-body dynamics, batteries, chaotic
nature, and stochasticity. Each of these components can contribute to the reality gap.

• Rigid body dynamics. Most robot simulators assume perfectly rigid bodies and joints,
but objects can be deformable, and real robots can be flexible, compliant or have uneven
joints. For example, real robot links and frames can bend or vibrate under load, whereas
simulators usually treat them as rigid bodies. Similarly, simulated joints are often mod-
eled as ideal, but they suffer from damping, internal springs, backlash, etc. This

Symptom: A
policy trained with
rigid-body
assumptions may
lead to unexpected
behaviors when
dealing with real,
deformable objects.

mismatch is a fundamental source of errors in dynamics modeling.
• Chaotic nature. Some real-world phenomena exhibit chaotic behavior, characterized

by a sensitive dependence on initial conditions, making them inherently non-reproducible
even with perfect models. These are fundamentally difficult to capture with a dynamic

6 Aljalbout et al.



model in a simulation. For example, atmospheric turbulence, complex flow patterns and
pressure waves in fluid dynamics cannot be fully captured by simplified models.

Symptom: Due to
chaotic effects, an
overfitted policy
with slightly
different initial
conditions might fail
in an unpredictable
manner.

• Stochasticity. The real world contains numerous sources of stochastic dynamics that
are fundamentally difficult or impossible to represent in simulation. For instance, ground-
based robots (wheeled or legged) encounter stochastic surface and friction variations and
debris that create unpredictable disturbances. Simulators typically either ignore these
effects entirely or model them as simplified Gaussian noise, failing to capture the complex
spatiotemporal correlations and non-linear coupling effects present in reality.

• Battery. This is particularly relevant for mobile robots. Even if the actuator model is
accurate, the energy source that feeds it can introduce inaccuracies. Since motor torque
scales directly with the voltage that the battery provides, any drop in battery voltage im-
mediately reduces the maximum joint torque the hardware can deliver. Hence, rapid joint
accelerations can experience a transient torque deficit that is absent in simulation. Bat-
teries are rarely modeled because their behavior is very nonlinear and history-dependent;
terminal voltage drops with instantaneous load and varies with cell temperature and age.
Neglecting these effects in simulation leaves controllers unaware of the reduced control

Symptom:
Unmodeled battery
dynamics (e.g.,
voltage drop with
load or age) may
cause the policy to
produce torques that
are less than
required to achieve
the desired
real-world motion.authority they encounter on real hardware, especially when operating at the limit of the

robot’s performance.
• Contact Dynamics. A key contributor to the dynamics gap in robotics is the in-

accurate modeling of physical contact. Real-world contact interactions are inherently
complex and nonlinear. Materials deform under pressure, friction varies with relative
velocity, and contact states can alternate between sticking, slipping, and separation. To
maintain computational efficiency, simulators typically rely on simplified models such
as point contacts, linearized friction cones, or compliant spring-damper systems. While
these approximations enable faster simulation, they often fail to capture critical physical
behaviors. This can result in non-physical artifacts such as spurious internal forces, un-
stable grasps, or unrealistic motion patterns. Such mismatches are particularly problem-
atic in contact-rich tasks like robotic manipulation, where precise interaction modeling
is crucial for successful control and planning.

Symptom: A
policy may fail to
grasp objects
because its learned
model is based on
simplistic contact
assumptions, leading
to unexpected
slipping or
instability.

3.1.2. Parameterization. A fundamental source of the dynamics gap arises from the incor-
rect parameterization of the physical model. While simulators account for various physical
parameters such as friction, aerodynamics, mass, inertia, etc., assigning accurate values to
these parameters can be challenging. Some physical properties can be difficult to measure
precisely and can be subject to changes over time.

Symptom: A
policy may
overshoot or
undershoot because
its learned dynamics
are based on
incorrect
parameters.

3.1.3. Numerical Integrators. The choice of numerical integration methods for unrolling
differential equations significantly impacts the reality gap. Simulators rely on numerical
integration schemes to approximate continuous dynamics. Discretization and the specific
integration method employed (e.g., Euler, Runge-Kutta, Quadrature, etc) can introduce
discrepancies between the simulated and the real system. Additionally, there is a trade-

Symptom:
Performance may
degrade over long
tasks as small
integration errors
accumulate.off between fidelity and computation time. Increasing the numerical integrator’s accuracy

by using smaller time steps or higher-order methods, generally leads to more accurate
simulations at the cost of increased computational time.

3.1.4. Human-Robot Interaction. Modeling human behavior in simulation presents unique
challenges that create substantial reality gaps (27). Humans exhibit complex, context-
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dependent, and often irrational behaviors that are difficult to capture with computational
models. Therefore, humans are typically simulated as simplified agents with predefined

Symptom: A
policy could take
advantage of wrong
assumptions in the
simulated human
behavior.

motion patterns, and basic reactive responses to robot actions.

3.1.5. Unmodeled Effects. There is a range of physical phenomena that are often overlooked
or simplified in simulation, and that can cause significant sim-to-real differences. These
include wear and tear of robot components, which degrade over time due to friction, material
fatigue, repetitive usage, etc. These degradations lead to changes in material properties such

Symptom:
Performance may
drift over time, or
the robot may
exhibit unexpected
vibrations and
instability as its
physical properties
change.

as stiffness, backlash, vibrations, or texture, which are not typically captured in simulators.
Thermal effects can also add to this category, as temperature fluctuations can affect the
performance of motors, sensors, batteries, and other components, potentially leading to a
significant change in their behavior.

3.1.6. Asset Fidelity. Simulations represent the environment using digital assets to encode
geometry, including primitive shapes, meshes, and Signed Distance Fields (SDFs) and ma-
terial parameters such as friction coefficients, restitution, density, etc. However, for com-
putational efficiency reasons, these representations are often simplified and approximated,
utilizing clean layouts and low-resolution models that lack the complexity and properties
of real-world environments, such as irregular terrain and fine-grained intricate structures.
Similarly, the robot’s own geometry is often simplified, omitting important physical details
and using simplified shapes for the sake of efficiency, which can lead to unexpected behaviors
such as self-collisions or unstable motions in reality.

Symptom: A
policy trained with
idealized digital
assets might act on
inaccurate geometric
assumptions, leading
to collisions with
unmodeled effects.

3.2. Perception and Sensing
In this section, we discuss the sources of the reality gap originating from perception and
sensing. The perception gap is defined by sim-to-real discrepancies in the observation
model O in the POMDP formulation. State-of-the-art simulators with advanced rendering
pipelines (16, 28, 29, 30, 31) have significantly improved the realism of sensor effects. How-
ever, they still fall short of capturing the full complexity and variability of the real world,
often resulting in discrepancies between simulated and real sensory measurements. Conse-
quently, policies trained in such simplified settings struggle to generalize during real-world
deployment. In the following, we outline the major sources of these mismatches and their
implications for sim-to-real transfer.

3.2.1. Sensor Model. Simulation models are designed to mimic the physical characteris-
tics of real-world sensors, including properties such as field of view, resolution, and noise
patterns. Additionally, they simulate how sensors respond to motion and how they are
mounted on the robot since placement significantly influence the resulting sensor data.

• RGB Cameras. For RGB cameras, NVIDIA Isaac Sim (28) uses ray tracing and phys-
ically based rendering to generate photorealistic images. CARLA (29) and AirSim (30),
both built on Unreal Engine, simulate realistic visuals for navigation. These simulators
are capable of modeling realistic lighting, shadows, and material interactions. Many
platforms optimized for real-time performance, such as Gazebo Classic (32) and early
MuJoCo (19), use simplified OpenGL-based rendering with idealized pinhole camera
models and Z-buffer depth computation (33). This omits real-world effects such as lens
flares, chromatic aberration, flying pixels, and rolling shutter distortions, causing learned

8 Aljalbout et al.



features to poorly transfer to real-world settings (34). Symptom:
Sensor-specific
artifacts (e.g., lens
distortion, LiDAR
beam patterns) can
lead to massive
sim-to-real
discrepancies in the
distribution of
observations.

• Depth Sensors. Many simulators support depth sensor simulation, including stereo
cameras, structured light (e.g., Kinect v1), and time-of-flight (e.g., Intel RealSense)
systems. Platforms such as Isaac Sim (28), Habitat-Sim (31) offer synthetic depth maps
derived from rendered 3D geometry. However, these simulations typically assume ideal
depth projections and often omit real-world artifacts such as quantization noise, depth
shadows, and ambient light interference (35, 36).

• LiDAR Sensors. Simulators such as CARLA simulate LiDAR sensors using raycasting
techniques from the sensor origin to the scene geometry. While CARLA approximates
various real-world effects, many intricate characteristics remain difficult to reproduce
accurately. These include beam divergence patterns, material-dependent reflectivity,
angle-of-incidence effects (37), and sensor-specific interference artifacts observed in real
devices like Velodyne, Ouster, or Livox.

• Other Sensors. Simulators also model sensors including joint encoders, IMUs, GPS,
and tactile sensors. However, they often idealize sensor behavior, neglecting real-world
effects such as IMU drift, GPS multipath, or latency. These simplifications can introduce
reality gaps, especially in tasks relying on sensor fusion or precise state estimation.

3.2.2. Sensor Noise. Real-world sensor measurements are inherently noisy due to factors
such as thermal effects (38), quantization errors (39), and environmental interference (40).
Crucially, sensor noise is often complex, non-Gaussian, state-dependent, temporally corre-
lated, and influenced by motion, temperature, lighting, and surface properties. For example,
depth sensors exhibit range-dependent uncertainty, structured missing data at depth dis-
continuities, and surface-dependent noise patterns (35). Despite these complexities, many
simulators use simple Gaussian noise models with fixed variance.

Symptom: Policies
trained on simple
Gaussian noise may
overfit and fail under
complex,
state-dependent, and
temporally
correlated real-world
sensor noise.

3.2.3. Environment Representation. In Section 3.1, we discussed how asset fidelity affects
the accuracy of dynamics simulation. A similar issue arises in perception and sensing:
using low-resolution assets, overly simplified scene graphs, or generic materials can fail
to capture fine-grained perceptual cues such as surface textures, reflectance, and subtle
geometry. Additionally, the lack of High Dynamic Range Image (HDRI) backgrounds may
result in unrealistic lighting, while not differentiating between static and dynamic bodies can
obscure critical motion and occlusion relationships. These limitations significantly degrade
perceptual realism, which becomes particularly problematic in tasks requiring fine-grained
object recognition or precise physical interaction.

Symptom: The
robot may fail to
recognize objects or
get lost in a real
room that looks
different from the
visually simplistic
simulation.

3.2.4. Robot Model. Simulated robots are typically defined by their geometry, kinematics,
and dynamics. These models are often based on CAD files and URDF or USD descriptions.
While accurate in structure, they usually simplify or omit important physical details. Real-
world factors such as manufacturing tolerances, material wear, and mechanical backlash are
rarely modeled. These discrepancies can introduce reality gaps. It can cause self-collisions,
unstable motions, or failed task execution (41, 42).

3.2.5. Collision Sensing. Simulators rely on efficient collision detection algorithms to de-
termine contact events between the robot and its environment, or within the robot itself.
To achieve real-time performance, they typically use simplified geometric approximations,
such as bounding volumes, convex decompositions, or sphere decompositions—instead of
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high-resolution visual meshes (43, 19). These proxy shapes are evaluated at discrete time
steps, which further limits the accuracy of contact modeling, especially in tasks involving
fine-grained manipulation or dense contact.

Symptom: When
attempting
dexterous
manipulation, the
robot may apply
incorrect forces or
fail to grasp an
object, as it’s
trained on
inaccurate collision
models.

3.3. Actuation and Control
Actuators, together with the low-level control loops around them, are the last interface of
the robot’s actions and the real world. They turn the actions from the policy into real-
world motion and interaction. Even when perception and dynamic models are perfect, any
mismatch or gap between what the policy predicts will occur, and what actually happens at
this interface can dominate the overall behavior of the robot and can lead to performance
degradation. Feasible commands in simulation can become delayed or unstable once they
are filtered through real actuators. These discrepancies constitute the actuation gap.

3.3.1. Actuator Models. Most simulators treat motors as first-order systems that are able
to perfectly produce torque responses instantaneously and linearly to the command signal.
However, real actuators (e.g., motors) behave as higher-order systems whose electrical and
mechanical time constants introduce a non-negligible phase lag. In addition, actuators are
non-linear due to dead-zones, backlash, slew rate constraints, time constants, hysteresis,
etc. If we take into account physical mechanisms attached to the motor, such as gears,
these problems only get worse, leading to added delays and increased steady state error.

Symptom: The
robot’s movements
may be jerky,
delayed, or unstable,
especially during
high-speed
maneuvers.

3.3.2. Low-level Control. Control policies typically do not produce raw torque/force com-
mands directly, and real robots rarely accept those commands directly. Instead, there exist
one or several low-level control layers that drive the actuator low-level control signal (e.g.,
PWM), and take as input a higher-level signal setpoint (e.g, position or velocity). This con-
version is generally done through dedicated hardware and firmware, for which most of the
time access is restricted by the vendor. Additionally, there are often hidden filters for anti-
aliasing and resonance suppression, saturation, anti-windup logic, or protective non-linear
effects like rate limiting. General robotics simulators do not simulate the lowest-level

Symptom: A
policy’s commands
may not produce the
expected motion, or
may even lead to
instability, as they
are modified by
hidden filters on the
real hardware.

controllers, since they strongly depend on the manufacturer of the actuator itself.

3.3.3. Power Electronics. Between the low-level controller commands and the input signal
to the motors, there is an additional layer: the power electronics. Motor drivers, inverters,
and Electronic Speed Controllers close their inner loops, introducing a latency of hundreds
of microseconds. Additionally, finite PWM resolution quantizes the commands produced by
the actuator, reducing accuracy and introducing additional dead zones near zero crossings.
Finally, most drivers come with protection logic, which enforces hard current and voltage
caps. These effects are absent in simulations and can largely widen the actuation gap.

Symptom:
Fine-grained
motions may fail,
with jitter or dead
zones near zero
velocity.

3.4. System Design
In addition to the gaps induced by the different modules of the robotics stack, the system
design and the choices it entails can influence the reality gap.

3.4.1. Communication. Although communication in simulation is nearly perfect, commu-
nication in real-world robotic systems can face multiple challenges, including delays and

10 Aljalbout et al.
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A taxonomy of sim-to-real transfer methods, distinguishing clearly between approaches and
techniques that are designed to reduce the reality gap and those designed to overcome it. The
colored squares indicate which reality gap each method addresses.

packet loss. In the real world, several mechanisms can be implemented to address these
challenges. For instance, it is common to introduce some kind of control attenuation mech-
anism to gradually bring the robot to a safe stop in case of prolonged communication packet
loss. Such mechanisms and behaviors are almost never modeled in simulation.

Symptom:
Communication
delays may cause
freezing, slowdown,
or jerky fallback
motions outside the
trained policy.

3.4.2. Safety Mechanisms. Real-world robotic experiments present several safety challenges
that are not of concern in simulation. It is very common to implement safety mechanisms
such as virtual walls in the real world but not in simulation. Such mechanisms change the
behavior of the robot and can further widen the reality gap.

Symptom: A
policy may fail to
react to safety
mechanisms unseen
during training in
simulation.3.4.3. POMDP Formulation. Simulated POMDPs often feature unrealistic information and

behaviors. For example, rewards and termination criteria may rely on privileged data, such
as exact collisions, not accessible in the real world, leading to different rewards in simulation
and reality. This mismatch is particularly problematic for model-based control methods that
depend on reward signals at inference time. Similarly, environment resets may use infeasible
behaviors, such as placing objects at precise positions with preset velocities, creating state-
action distributions unlike those in real deployment, where such resets are impossible.

Symptom:
Real-world
evaluations might
strongly differ from
the ones in
simulation due to
differences in the
state-action
distribution and the
reward.

3.4.4. Implementation Details. Many implementation details often differ between real-
world and simulated environments. Simulation commonly involves the discretization of
naturally continuous processes such as image formation and system dynamics. The gran-
ularity of these discretizations can significantly impact the reality gap. Low-level control
implementation can also involve computational integration and differentiation steps, which
can also end up running at different frequencies in simulation and the real world.

Symptom: A
policy may become
unstable due to
mismatched control
frequencies or
numerical methods.
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4. Existing Solutions
Successful sim-to-real transfer requires careful consideration of the reality gap. Methods
addressing this challenge typically target one or more of the previously introduced sources
of the reality gap (Section 3). We mainly distinguish between approaches that attempt to
reduce the gap by improving different aspects of the simulation (i.e., eliminating sources of
the reality gap) and approaches that attempt to overcome the gap by making the system
agnostic, adaptive, and/or passive to certain simulation aspects that cannot be accurately
modeled. Figure 3 summarizes the different methods that can be used for reducing and
overcoming the different reality gaps. A general recipe for successful sim-to-real transfer
includes the following steps.

Sim-to-Real Recipe

1. Design a simulation that represents all variables relevant for the target appli-
cation.

2. Attempt to reduce the different components of the reality gap as much as
possible.

3. Design training methods that can help overcome the remaining gap.
4. Train policies in simulation (ideally under massive parallelization).
5. Evaluate policies in the target real-world environment.
6. Adjust simulation parameters based on real performance and retrain.

4.1. Reducing the Gap
To reduce the gap, we need to make system modifications that either i) improve the simula-
tion’s fidelity (see section 4.1.1), ii) select input and output modalities and representations
that have a smaller reality gap (see section 4.1.2), or iii) design systems with components
and constraints that induce a smaller gap (see section 4.1.3).

4.1.1. Improving Simulation. It is possible to improve different aspects of the simulated
environment, such as its physical fidelity, sensor models, and many other components that
influence the gaps introduced in section 3.

• System Identification. has been repeatedly shown to be a crucial aspect for successful
sim-to-real transfer in multiple domains such as navigation (8), locomotion (4, 44), and
manipulation (45, 46). One recent trend is to do online and iterative system identifica-

Sys-ID helps reduce
the dynamics gap.

tion with data collected at different iterations of real-world evaluations (47, 48, 49, 50).
In addition to physical parameters, it is common to identify and match system-level
parameters representing different aspects of a physical environment, such as its latency,
control frequency, and actuation delay (4, 44, 6, 21).

• Learned Residual Models. When discrepancies between the simulated parametric
model and the real-world are large, for example when the simulated physics model makes
fundamentally-inaccurate assumptions (e.g., rigid-body dynamics for modeling compliant
bodies), system identification may be ineffective. Residual simulation, on the other hand,

Learned residual
models can reduce
several sources of
reality gap.

proposes a compelling solution: learn a model that modifies an imperfect simulator, such
that the composite dynamics model more accurately reflects the real world. Residual
simulation approaches often use learning to modify the outputs of a simulator, namely
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the predicted states, in order to better reflect real-world observations. Golemo et al.
(51) first trained an Long-Short Term Memory neural network on differences between
simulated trajectories and real-world trajectories to improve policy transfer. Ajay et al.
(52) trained a stochastic Recurrent Neural Network to augment a deterministic simulator
to capture uncertainty in contact dynamics. Gruenstein et al. (53) trained a network to
augment an analytical model to capture unmodeled compliance and friction. Bauersfeld
et al. (54) trained a neural network to augment a blade-element-momentum aerodynamic
model, capturing residual forces and torques for high-speed quadrotor flight. Gao et al.
(55) extended residual simulation to soft robotics, training a network to apply corrective
forces to a finite-element model of a pneumatic arm. Other residual simulation efforts
have proposed a learning technique to modify the inputs of a simulator, namely the
applied actions, so that the resulting states more closely reflect the real world. For
instance, Christiano et al. (56) trained policies for a manipulator in simulation, and
afterwards learned an inverse dynamics model that maps a simulated action to a corrected
real-world action that produces the state transition intended by the simulator. Hanna
et al. (57) took a similar approach, but also augmented the simulator with the action
transformation model before training the policy.

• Real-to-Sim First. A variety of techniques have aimed to use real-world data to con-
struct visually and dynamically accurate simulation environments on the fly at test
time (58, 59, 60, 61, 62, 46, 63, 64, 65, 66, 67, 68). Real-to-sim environment cre-
ation involves creating environments in simulation from data collected in the real world
Dreal = {(z, a, z′)i}N

i=1. This “inverse” problem has multiple facets – constructing accu-

Real-to-sim can
reduce various kinds
of reality gap.

rate geometry of the environment, constructing accurate kinematics and dynamics, and
lastly constructing accurate visuals and rendering.
For geometry identification, techniques for real-to-sim often build on 3D reconstruc-
tion (69, 70) and novel-view synthesis methods for reconstructing geometry from multi-
view data. Alternatively, a more recent class of monocular-3D methods has used learning-
based priors to generate entire 3D meshes from single RGB images of objects (71).
In terms of identifying kinematics and dynamics, there is a range of techniques that have
been proposed to take constructed geometries and imbue them with physical properties
needed for manipulation. Kinematic identification involves accurately inferring object
and scene articulation, and degrees of freedom from real data. This is particularly
challenging when each of these DoFs is not directly activated during data collection (67).
A variety of recent methods (66, 72, 68) have attempted to infer articulation from video
or image sequences using foundation models. While they provide a reasonable starting
point, there is still a considerable gap with respect to the real world. Finally, to obtain
accurate environment renderings, novel-view synthesis methods have been particularly
effective (73, 74). These techniques enable high-fidelity neural rendering learned from
purely real-world data, while enabling 3D, multiview image queries.

4.1.2. Choice of Modalities and Representations. For most robotic tasks, it is possible to
define different observation and action spaces. This choice of interface defines the potential
behaviors of the resulting system and can have strong implications on the reality gap (25,
75, 76, 77, 78, 79, 80, 81).

• Choice of Modalities. Different sensors and actuators can yield different gaps (82, 83).
For instance, using depth observationn, or point clouds yields a smaller reality gap than
images, and this approach is a common practice in the field (84, 75, 79, 80, 81). RGB
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images are hard to render photo-realistically, and often include artifacts and features
that are very complex to model, such as the ones discussed in section 3.2.1.

Choice of
modalities &
representations
affects the
perception gap.

• State Representations. Similar to sensor modalities, the choice of state representa-
tions can strongly influence the reality gap (85, 86, 87, 88, 89). While using inferred
depth maps can be a popular choice in the literature, other representations such as key-
point detections (87), visual feature tracking (90) or foundation model embeddings (89)
have also been proved to be good abstractions for reducing the sensory reality gap.

• Action Representations. The action space plays a crucial role in reducing the sim-
to-real gap as demonstrated across robotics domains including navigation (91), locomo-
tion (92), and manipulation (25). For instance, for manipulation, previous studies have
shown the advantages of using joint velocity control spaces for sim-to-real transfer (25).

Choice of action
representations
affects the actuation
gap.

4.1.3. Design Choices. Another important factor to reduce the reality gap is the system
design and implementations. When designing a robotic system, multiple choices need to
be made depending on the task requirements. This design, however, strongly influences
the transferability of any behavior from simulation to the real world. Hence, it is quite
important to consider the reality gap when designing the system, including its hardware,
the controller’s implementations, constraints, and even the software stack.

• Low-level Controller Improvements. While high-level policy learning typically takes
place in simulation, the final interaction with the real world is governed by low-level con-
trollers. Improving the robustness and fidelity of these controllers is therefore crucial for
overcoming the reality gap. One effective approach is to increase the control frequency
or bandwidth, allowing the system to respond more quickly to discrepancies and better
handle latency, noise, or unmodeled dynamics. For example, Zhang et al. (93) show

Low-level
controller
improvements can
reduce the actuation
gap.

that high-frequency impedance controllers can significantly improve sim-to-real trans-
fer in manipulation tasks by stabilizing behavior under real-world disturbances. Such
improvements on the low-level controllers can make the system more resilient to imper-
fections in both the simulator and the real-world environment.

• Software Stack Alignment. Beyond physical realism, achieving successful sim-to-real
transfer also requires consistency in the software stack between simulation and real-world
deployment. Even small discrepancies, such as mismatched control rates, missing filters,

Software stack
alignment can
reduce both reality
gap and performance
gap.

or unmodeled safety checks, can lead to unexpected behavior and degraded performance.
Replicating consistent software components ensures that the policy is exposed to the
same control dynamics during both training and real-world execution.

• Hardware Design. The design of the robot itself can also significantly influence the
sim-to-real gap. Hardware choices that simplify modeling or improve physical robustness
can make it easier to simulate the system accurately and improve robustness to discrep-
ancies. For example, using actuators with low latency and consistent torque output,

Hardware design
can affect the of
dynamics gaps and
the actuation gap.

or sensors with well-characterized noise profiles, can improve the fidelity of simulation
and reduce the need for complex system identification. Additionally, hardware with pas-
sive stability, compliant actuators, or simple kinematics can better tolerate control and
perception errors, which could further improve the chances of successful transfer. These
principles align with recent advances in real-world imitation learning, such as (94), where
careful co-design of hardware and learning pipelines enables effective policy learning.

• Constraining System Dynamics. Another practical strategy for reducing the reality
gap is to initially limit the robot’s dynamic complexity during deployment. By operating
at lower speeds or avoiding aggressive maneuvers, the system becomes less sensitive to
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modeling inaccuracies, actuator delays, and perception noise. Such non-dynamic behav-
iors reduce the burden on both the controller and simulator, improving robustness under
real-world uncertainties. For example, Chen et al. (95) show that constraining motion to

Constraining
system dynamics
can reduce the
dynamics gap and
the perception gap.

quasi-static regimes can lead to more reliable sim-to-real transfer in manipulation tasks.

4.2. Overcoming the Gap
In the previous section, we discussed different paradigms to reduce the reality gap with
different measures to bring the simulated and real-world environments closer together. An
orthogonal family of methods assumes a fixed reality gap and attempts to overcome it by
either making the policies agnostic to the choice of models and parameters or making the
policy capable of detecting and reacting to different physical and systematic parameters.

4.2.1. Domain Generalization and Adaptation. One of the most common approaches to
overcome the reality gap is to expose the policy to a large variation of the system and
dynamics parameters during training. As a result, the policy should be robust to different
instantiations of these parameters, including the ones representing the real world.

• Domain randomization (DR). Among the most popular and widely-used approaches
to achieve this is DR. In DR, we train the policy in simulation using a broad distribu-
tion of simulated environments spanning different simulation parameters such as visual
(more generally sensory) parameters like texture and lighting, observation and action
noise, physics parameters such as mass and inertia, system delays, object properties, and

Domain
randomization can
reduce all kinds of
reality gaps.

others. Consequently, the policy can learn a behavior that is applicable to such a large
distribution of environments. DR mitigates the need for painstaking system identifica-
tion and simulator calibration (96). One of the earliest applications of DR was to drone
navigation (11). The paradigm has gained significant popularity ever since and has been
used to produce some of the most impressive robotics milestones, including dexterous
manipulation (3), quadruped locomotion (4, 44), and champion-level drone racing (8).
To further improve traditional DR, multiple approaches have been proposed to automate
the choice of parameter distributions. For instance, Akkaya et al. (3) proposed auto-
matic DR to progressively expand the range of random dynamics as the policy becomes
successful. Tiboni et al. (97) propose to use an offline real-world dataset to estimate the
optimal DR ranges allowing to compensate for unmodeled effects. Similarly, Chebotar et
al. (48) proposed using real-world data to infer simulation parameters for online training.
The lowest-return dynamics from an ensemble effectively acts like adversarial samples
for training. For a comprehensive review of DR methods, see (98).

• Adversarial Training systematically generates data to enforce robustness and enhance
model resilience beyond standard training. Pinto et al. (99) propose robust adversarial
reinforcement learning, where in addition to the main agent, an adversary agent is trained
to apply disturbances to destabilize the main agent’s policy.

Adversarial
training can reduce
the actuation gap,
perception gap, and
dynamics gap.

• Meta Learning is another paradigm for domain adaptation. For instance, in (100), the
authors propose to use meta-learning for policy learning in simulation under a large dis-
tribution of simulation parameters, allowing the policy to internally recognize variations
of parameters and act according to its internal understanding. This family of methods

Meta learning
adapts the
simulation
parameters to reduce
the reality gap.leverages meta reinforcement learning to adapt the policy to variations of simulation pa-

rameters (101). While domain-randomization-based methods aim to learn a policy that
can generalize to a large distribution of simulation parameters, methods such as meta-

www.annualreviews.org • The Reality Gap in Robotics 15



learning aim to adapt the policy as inspired by adaptive control methods (102, 103).
One famous example of such methods beyond explicit meta learning, is rapid motor
adaptation (RMA) (104). RMA learns an encoder that infers latent representations
of the environment’s dynamics using privileged information in simulation. Given such
an encoder, the policy can adapt its actions based on the inferred latent environment
representations.

• Domain Adaptation can similarly be used to enhance the adaptiveness of the policy to
variations in environment variables and dynamics (10, 105, 48, 106). Compared to meta
learning and RMA, domain adaptation methods for sim-to-real transfer aim to make the
policy more robust to the sim-to-real distribution shift. In other words, the main focus
of these methods is to enable observation adaptation in the policy and not necessarily

Domain
adaptation can
reduce the
perception gap.

adaptation to the changing dynamics.

4.2.2. Data Selection and Exploration. Another important category of methods to over-
come the reality gap is to carefully select and curate the training data and exploration
strategies used in simulation. These methods focus on generating training data that most
closely resemble the target real-world data or data from worst-case behaviors.

• Incorporating real-world data to inform simulation training can greatly improve
transfer. For instance, Niu et al. (107) proposed integrating limited real-world data
with simulated experiences, while adaptively penalizing learning from simulated state-
action pairs that exhibit significant discrepancies from real-world dynamics. Torne et
al. (58) proposed a real-to-sim-to-real pipeline that first uses real-world data to train
a vision-based policy that is later used to train a teacher policy in simulation. The

Real world data
can be used to
reduce all kinds of
reality gaps.

teacher is then used to train a vision-based student policy in simulation using a mixture
of RL with simulated rollouts and behavior cloning using real-world data. This work
demonstrated the benefits of co-training with real-world data versus training with only
simulation data. Ankile et al. (108) proposed a residual RL scheme to combine real-world
and simulated data for vision-based manipulation. Maddukuri et al. (109) demonstrated
the effectiveness of co-training vision-based manipulation policies with simulation and
real-world data. Co-training has also been shown to be beneficial for training robotic
foundation models (110, 111).

• Sim-to-real-driven exploration methods aim to explore the state-action space in
ways that expose the policy to interactions likely to enhance its transfer from simulation
to the real world. For instance, Liang et al. (112) proposed learning exploration policies
that are executed in the real world to identify critical system parameters. Given this
improved model of the environment, they perform trajectory optimization to solve the
downstream tasks in the real-world environment. Another approach is to leverage the

Sim-to-real-driven
exploration can
reduce the
perception gap,
dynamics gap, and
actuation gap.

simulation to learn exploration policies that are transferred to the real world for the sole
purpose of learning and fine-tuning policies with real-world interactions (113, 46).

4.2.3. Policy Architecture and Regularization. In addition to the data a policy is exposed
to at training time, the policy’s architecture and constraints can play a crucial role in the
transfer to the real world. In this section, we describe different ways to structure the policy
and regularize it in a way that helps sim-to-real transfer.

• Modularity of the system and policy architecture has also been shown to be beneficial
for sim-to-real transfer. Clavera et al. (114) proposed decomposing the system into
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distinct modules, where vision and low-level control are managed independently from
the policy. Their work demonstrated robust transfer of pushing policies. Mueller et
al. (115) proposed a similar architecture for autonomous driving. Similarly, Zhang et

Modularity can
reduce the
perception gap,
dynamics gap, and
actuation gap.

al. (116) propose learning perception and control networks with different losses and fine-
tuning the end-to-end policy network combining perception and control modules using
a weighted loss. Julian et al. (117) proposed a hierarchical architecture, learning several
low-level skills and a high-level policy coordinating them. By decomposing the policy
into multiple skills, they reduce the amount of data needed to generalize to a new domain
and environment, such as the real world.

• Privileged information is available to the agent at training time in simulation but not
during deployment in the real world. Such information can boost learning efficiency and
enable larger-scale training in simulation (118, 119, 120). One popular example of such
method is the previously discussed RMA algorithm (104). RMA uses privileged infor-
mation to train a latent space online as part of a system identification module. Pinto et
al. (121) propose an asymmetric actor-critic architecture, where the critic is conditioned
on privileged information, while the actor policy is conditioned on true observations.

Privileged
information
addresses the
perception gap,
dynamics gap, and
actuation gap.

Radosavovic et al. (7) trained a teacher policy for humanoid locomotion with privileged
information and then distilled the teacher behavior into a student agent conditioned on
the observations. To overcome student-teacher asymmetry, they propose a loss combin-
ing RL and teacher distillation, similar to the approach previously proposed in (122) for
block picking. The main difference between these two methods is how they combine RL
and imitation learning losses using either fixed coefficients (122) or a schedule (7). More
recently, Krinner et al. (123) proposed using privileged state information in state-space
world models to improve the training efficiency of a model-based RL agent. The proposed
approach was successfully demonstrated on vision-based high-speed drone racing.

• Representation learning leverages self-supervised objectives to learn representations
that can be better suited for policy search and sim-to-real transfer. By carefully design-
ing the representation learning loss, we can enforce the learned representation properties
that are desirable to overcome certain sources of the reality gap. While domain random-
ization and adaptation methods improve domain robustness via exposing the policy to
a wider set of data with the hope of out-of-distribution generalization, representation
learning methods leverage loss functions to learn robust features. For instance, Tanwani

Representation
learning can help
reduce the
perception gap.

et al. (124) proposed an approach that leverages real-world data to align the distributions
of the state representations in simulation and the real world, making the features more
robust to the corresponding domain shift. Yoneda et al. (125) propose to use adversar-
ial training to adapt the observation encoder learned in simulation once it encounters
real-world samples. This process is combined with a dynamics consistency loss to ensure
that latent transitions in the target domain remain faithful to the dynamics learned in
the source domain, thereby preserving policy effectiveness despite visual discrepancies.
Xing et al. (126) proposed a contrastive learning approach to learn background-agnostic
and task-relevant representations, ensuring effective feature learning for the downstream
task while ignoring irrelevant, noisy background information.

• Policy regularization can change the behavior of the policy in a manner that helps
overcome the reality gap for sim-to-real transfer. Regularization typically occurs through
loss functions or elaborate reward designs for RL agents. For instance, it has become a
common practice to penalize the magnitude of actions and consecutive action differences
through reward terms or penalties (44, 21, 127, 128, 25). Some works even penalize

Policy
regularization can
reduce the dynamics
gap.
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the magnitudes of explicit measures such as velocity and accelerations (128, 44), as well
as power loss (129). While all of these works rely on RL penalties to enforce desirable
properties such as smoothness on the learned policies, such policies can also be imposed
using loss functions. For instance, Mysore et al. (130) introduced smoothness losses to
the policy training algorithm to minimize the temporal and spatial Lipschitz constraints
of a quadrotor control policy function. Their work demonstrated a clear advantage
of loss function regularization over reward engineering. Chen et al. (131) presented
similar findings for humanoids locomotion. While these methods enforce properties on
the policy to overcome the reality gap, Niu et al. (107) proposed incorporating real-
world data during training to penalize the action-value function in simulation when
interactions exhibit significant discrepancies in dynamics between the simulated and real
environments.

5. Evaluation Metrics
Research on sim-to-real transfer has leveraged various metrics for evaluation. In this section,
we survey such metrics while making a clear distinction between metrics evaluating the
reality gap itself and metrics that evaluate the sim-to-real transfer performance.

5.1. Assessing the Reality Gap
A well-designed evaluation framework for assessing the gap between simulation and the real
world is critical for reducing the reality gap, as well as for understanding, diagnosing, and
ultimately improving the transferability of learned policies.

• Sim-to-real Correlation Coefficient. One key question in sim-to-real transfer is
whether performance improvement observed in simulation reliably leads to better perfor-
mance in the real world. To address this, Kadian, et al. (132) introduced the sim-to-real
Correlation Coefficient (SRCC). SRCC is defined as the Pearson correlation coefficient
between the performance metrics of the agents in simulation and the real world,

SRCC =
∑N

i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2
√∑N

i=1(yi − ȳ)2
, 6.

where xi and yi denote the the task evaluation performance (e.g., success rates) of the
i-th policy in simulation and the real world, respectively, and x̄, ȳ are their corresponding
means. A coefficient close to +1 indicates a strong positive correlation, suggesting that
the simulation performance is a good predictor of real-world performance. In contrast,
values near 0 imply poor correlation, meaning simulation results offer little guidance for
real-world evaluation. Importantly, a simulator with high average real-world performance
but low SRCC is still problematic. Without a reliable correlation, improvements in
simulation may have unpredictable effects in the real world, making it difficult to make
informed design decisions. Most of the changes need to be validated on a physical robot,
which defeats the purpose of using simulation to accelerate development.

• Offline Replay Error. When direct real-world policy deployment is not feasible, offline
replay error provides a practical alternative for evaluating sim-to-real transfer. This
situation often arises during early prototyping stages or when deployment is limited
by cost, safety concerns, or hardware availability. Offline replay error compares state
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trajectories between a real-world trajectory and the equivalent simulation trajectory
when replaying the real-world actions in an open-loop fashion (25). Formally, given a
trajectory of real-world policy rollout states {sreal

t } and corresponding actions {at}, the
offline replay error is defined as

Ereplay = 1
T

T∑
t=1

∥ssim
t − sreal

t ∥2, 7.

where T is the length of the trajectory, and ssim
t is obtained by rolling out the real-

world actions in an open-loop fashion in simulation. This metric is appealing due to
its simplicity and low cost: no real-time interaction is required, and evaluation can be
done offline using logged data. It provides a quick diagnostic of how well the simulation
represents the target real-world environment under the distribution induced by the policy.
A policy having a high offline replay error is a strong indicator of a large reality gap.

• Visual Fidelity Analysis. Assessing the perceptual domain gap between simulated
and real-world environments is particularly relevant for visuomotor policies that map
visual observations directly to control commands, as well as visual state representations
methods. To quantify the visual similarity, a variety of metrics have been proposed that
operate at either the pixel level or in the space of learned image embeddings. These in-
clude both distribution-level metrics, which assess the global characteristics of image sets,
and single-image metrics, which compare individual simulated images to corresponding
real ones (133). For distribution-level evaluation, commonly used metrics include In-
ception Score (IS) (134), Fréchet Inception Distance (FID) (135), and Kernel Inception
Distance (KID) (136), TSNE dimensionality reduction (137, 138, 126), all of which op-
erate on feature representations extracted from pretrained networks. For single-image
evaluation, metrics such as the Structural Similarity Index (SSIM) and Peak Signal-to-
Noise Ratio (PSNR) (134), Instance Performance Difference (IPD) (139) are used to
measure differences in luminance, contrast, and structural details.

5.2. Assessing Sim-to-Real Transfer
While evaluating the reality gap is very valuable to analyze the limitations of the simulation
and further improve it, metrics that evaluate the sim-to-real transfer performance under a
fixed reality gap are also necessary. This category includes metrics such as success rate,
cumulative reward (in reinforcement learning), and task-specific indicators tailored to dif-
ferent domains. In this section, we will discuss in detail the evaluation metrics commonly
used to quantify sim-to-real transfer performance.

• Success rate measures the proportion of trials in which a policy successfully completes
the intended task, written as Success Rate = Nsuccess

Ntotal
. It is widely used as a simple and

reliable indicator of sim-to-real transfer effectiveness. This measure is most informative
when proper randomization is performed on all involved variables, such as the initial
environment state and simulation seeds, among many others. Success rates are commonly
reported in diverse domains, including manipulation (140, 23, 26, 14, 77, 141, 142, 143),
navigation (144, 145, 132, 146), autonomous racing (8, 147), legged locomotion (104,
44, 104). High task success rates in the real world often indicate that a policy has
successfully transferred key competencies learned in simulation. However, such metrics
are often binary or aggregate and do not reveal where or why the transfer might have

www.annualreviews.org • The Reality Gap in Robotics 19



failed. For example, two policies with the same success rate might differ significantly in
robustness, and some of the failure modes can be critical in real-world deployment.

• Cumulative reward. For policies learned using reinforcement learning (RL) or with a
predefined reward structure, the cumulative reward measures how well a policy achieves
long-term objectives by summing the reward signal over time: R =

∑T

t=0 rt, where rt

is the reward at timestep t and T is the total duration of the episode. Unlike binary
success metrics, it can capture the progress and efficiency of the policy rollouts, offering
a more fine-grained view of sim-to-real performance. However, its interpretability de-
pends on consistent and well-designed reward functions across simulation and real-world
domains (148, 113, 48). This can make the comparison of different sim-to-real tech-
niques under varying RL configurations difficult, especially when reward formulations
differ across tasks or platforms.

• Task-specific metrics. In addition to general success or reward-based metrics, most
of the successful sim-to-real studies evaluate performance using task-specific criteria tai-
lored to the target domain. For example, navigation tasks may use path efficiency or
time-to-goal (145), while manipulation tasks typically use object-centric metrics, such as
object-distance-to-goal for object pushing (25). These metrics offer fine-grained insights
into policy behavior and failure modes that are not captured by success rate alone. How-
ever, for real-world deployment, it will be challenging to provide standardization across
benchmarks, which can hinder fair comparison between methods.

6. Discussion and Open Problems
Despite the reality gap and the challenges it creates, sim-to-real transfer has been a very
successful and popular paradigm in robotics. However, it is unclear whether simulation will
remain a major tool for robotics development as many challenges persist. We believe that
there is still untapped potential for simulation in robotics and discuss some of the challenges
and opportunities next.

6.1. Wrong Models, Better Controllers
As briefly mentioned in section 2.3, it is more important in practice to reduce the sim-to-real
performance gap than to reduce the reality gap. This motivates the question of whether
accurate physics modeling is needed to perform reliable model-based control. Model-based
approaches, such as model-based RL and model predictive control (MPC) tend to be more
data efficient than model-free RL and thus leveraging them in sim-to-real contexts can
decrease the scale of data generation necessary for sufficiently reliable control. Particularly,
researchers have examined how training for model-based RL can be adapted to not focus
on accurately capturing the underlying physics, but instead learning a dynamics model
that improves control performance (149, 150). Results show that focusing on learning a
model accurately near high-return areas outperforms the alternative of trying to learn a
model with uniform accuracy across the state-action space (149). Guzman et al. (150)
examine the use of Bayesian optimization for MPC, where they sample different physical
parameters in simulation for tuning the MPC controller. Results show that optimizing for
control performance outperforms planning with the most likely model estimate. As such, an
open question remains as to how a robot can most efficiently use a simulator with incorrect
parametrization to learn either a policy or stochastic world model for use in generating
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robust, real-world performance.

6.2. Differentiable Simulators.
Differentiable simulators offer the computation of gradients of quantities involved in the sim-
ulation which allows them to be integrated in gradient-based optimization workflows (151).
While traditional simulators, such as MuJoCo (19) and Bullet (43) can often be useful in
such applications by leveraging finite differences, a differentiable simulator typically offers
fast and analytically correct gradients. The methods to compute such derivatives typically
fall into two categories: automatic differentiation leveraging the chain rule of differentiation,
and manual computed analytical gradients. The most common form of Autodiff, reverse-
mode automatic differentiation, accumulates gradients for the inputs from each operation,
given the output gradients. Autodiff can be realized through a tape to record the opera-
tions of the computation path which allows the (reverse) playback in the backward pass.
Frameworks, such as NVIDIA Warp (152), Taichi (153), JAX (154), and PyTorch’s compi-
lation option (155) allow code to be generated for the backward pass, which is critical for
performance. As such, an open question remains as to how to best leverage differentiable
simulation and augment it with learning-based dynamics model.

6.3. Video and World Models
Video models are primarily designed to process, generate, or predict sequences of visual
frames. Their core objective is to model temporal dynamics and evolving visual content
within video data. These models address a wide range of tasks, including future frame
prediction based on observed sequences and conditional video generation from text, ac-
tions, or other modalities (156). World models pursue a broader goal: learning internal
representations of an environment that enable simulation and prediction of future states in
response to agent actions or external events (157, 158, 159). These models seek to encode
the causal structure of the world to support planning, imagination, and counterfactual rea-
soning (160). Despite recent progress, key challenges remain with significant opportunities
for future research. Video models, while effective at generating dynamic visual content,
struggle with maintaining temporal consistency, physical plausibility, fine-grained control-
lability, and computational efficiency—issues that hinder their reliability in robotics and
simulation. World models offer a promising alternative to white-box simulators and can be
learned using real-world data, potentially creating a smaller reality gap. However, they face
problems such as compounding errors in long-term predictions, poor generalization to new
environments, difficulty balancing abstraction with realism, and high data requirements.
Addressing these challenges will require innovations in model architecture, integration of
physical priors, and improved training strategies. In future iterations, the paradigms of
world modeling and simulation may not be so distinct, with simulators naturally providing
data to bootstrap world models for deployment in reality.

6.4. Simulation-Based Inference
Simulation-based inference (161) is a statistical technique to approximate the posterior
distribution of simulation parameters θ. Given a prior distribution p(θ), simulation dy-
namics model Ts(st+1|st, at), a set of simulation observations {ss

i}S
i=1 and a set of real

state observations {sr
i}R

i=1, the posterior can be computed following the Bayes’ rule as
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p(θ|{sr
i}R

i=1, {ss
j}S

j=1) ∝ p({sr
i}R

i=1|θ)p(θ). The main challenge is that the likelihood term is
generally intractable. If we consider simulation as a generative process, ss = g(Ps, θ),
where ss are simulated states or observations, the likelihood term can be defined as
p({sr

i}R
i=1|θ) =

∫
p({sr

i}R
i=1, ss|θ)dss. To compute this explicitly would require integrat-

ing over all possible trajectories the simulator could generate for a specific parametrization
θ. This is not feasible for the majority of robotics simulators that involve complex physics
models (including contact models), observation models, and numerical solvers. To address
this issue, approximate inference methods have been proposed based on Monte Carlo tech-
niques such as Approximate Bayesian Computation (162), and variational inference (163).
Also, note that computing the posterior is an ill-posed inverse problem, as there are possi-
bly many simulation parameters that can generate the same trajectories. For example, in a
pushing task where a manipulator pushes a block on a table, the resistance of the motion can
be attributed to higher mass, higher friction, or both. This leads to posterior distributions
that are highly multimodal. To account for generic posteriors and sidestep the approxima-
tion of the likelihood term directly, recent works in robotics have used techniques where a
neural network is trained to directly output the posterior distribution p(θ|{sr

i}R
i=1, {ss

j}S
j=1).

This is known as neural posterior estimation (164, 165) and has been used in robotics
recently (166, 167, 168, 169, 170, 171, 172). The posterior can then be used as the random-
ization distribution for domain randomization. For a review of simulation-based inference
methods applied to domain randomization, see (98). We believe simulation-based inference
methods will continue to be a popular research topic in robotics.

6.5. Simulation for Large Robotics Models
In recent years, there have been substantial efforts to collect real-world data to train large
models for robotics with techniques such as imitation learning (173, 174, 158). However,
realistically, real-world data collection of action-labeled datasets is limited by several factors
such as human efforts and hardware resources. Simulation represents a great opportunity
to augment such efforts with massive-scale synthetic data generation. Many recent works
explored this avenue and proposed novel pipelines to procedurally generate simulated data
based on real-world demonstrations (175, 176). As with RL, simulated data would need
to have a small reality gap to be valuable in real-world deployments. An open question
is whether the methods and assumptions needed to reduce these gaps would themselves
be limiting factors to the scale of data that can be collected in simulation (under these
assumptions and using these methods).

Another recent trend is to leverage simulation to evaluate real-world policies in a sys-
tematic and reproducible manner (177, 178). In this context, a proper calibration of the
reality gap is crucial for simulation to be a good proxy for the real world. While methods to
reduce this gap are very similar to the ones used for sim-to-real transfer, an open question
is how to overcome the reality gap for the specific downstream purpose of model evaluations
such that the performance of a policy in simulation matches the performance in the real
environment.

7. Conclusion
This survey is an attempt at dissecting the very complex yet very important problem of
the reality gap in robotics. We discussed the sources of these gaps, the problems they
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create and solutions to alleviate them, together with evaluation metrics and opportunities
for future research. By better understanding the problem, we can more clearly situate
ourselves as a community to face future research challenges. Leveraging simulation to the
best of our capabilities will enable a cost-effective alternative for the development of the
future generation of robotics systems.
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82. Zhou B, Krähenbühl P, Koltun V. 2019. Does computer vision matter for action? Science
Robotics 4(30):eaaw6661

83. Chen B, Sax A, Lewis F, Armeni I, Savarese S, et al. 2021. Robust Policies via Mid-Level Visual
Representations: An Experimental Study in Manipulation and Navigation. In Proceedings of
the 2020 Conference on Robot Learning, ed. J Kober, F Ramos, C Tomlin, pp. 2328–2346,
vol. 155 of Proceedings of Machine Learning Research, pp. 2328–2346

84. Loquercio A, Kaufmann E, Ranftl R, Müller M, Koltun V, Scaramuzza D. 2021. Learning
high-speed flight in the wild. Science Robotics 6(59):eabg5810

85. James S, Wohlhart P, Kalakrishnan M, Kalashnikov D, Irpan A, et al. 2019. Sim-To-Real
via Sim-To-Sim: Data-Efficient Robotic Grasping via Randomized-To-Canonical Adaptation
Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR)

86. So J, Xie A, Jung S, Edlund J, Thakker R, et al. 2022. Sim-to-Real via Sim-to-Seg: End-to-end
Off-road Autonomous Driving Without Real Data. In Conference on Robot Learning

87. Zhang Y, Zhang Z, Ke L, Srinivasa S, Gupta A. 2024. ATK: Automatic Task-driven Keypoint
selection for Policy Transfer from Simulation to Real World. In CoRL Workshop on Learning
Robot Fine and Dexterous Manipulation: Perception and Control

88. Ho D, Rao K, Xu Z, Jang E, Khansari M, Bai Y. 2021. Retinagan: An object-aware approach
to sim-to-real transfer. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pp. 10920–10926. IEEE

89. Silwal S, Yadav K, Wu T, Vakil J, Majumdar A, et al. 2024. What do we learn from a large-
scale study of pre-trained visual representations in sim and real environments? In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 17515–17521. IEEE

90. Kaufmann E, Loquercio A, Ranftl R, Müller M, Koltun V, Scaramuzza D. 2020. Deep Drone
Acrobatics. In Proceedings of Robotics: Science and Systems. Corvalis, Oregon, USA

91. Kaufmann E, Bauersfeld L, Scaramuzza D. 2022. A benchmark comparison of learned control
policies for agile quadrotor flight. In 2022 International Conference on Robotics and Automa-
tion (ICRA), pp. 10504–10510. IEEE

92. Kim D, Berseth G, Schwartz M, Park J. 2023. Torque-based deep reinforcement learning for
task-and-robot agnostic learning on bipedal robots using sim-to-real transfer. IEEE Robotics
and Automation Letters 8(10):6251–6258

93. Zhang X, Tomizuka M, Li H. 2024. Bridging the sim-to-real gap with dynamic compliance
tuning for industrial insertion. In 2024 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 4356–4363. IEEE

94. Chi C, Xu Z, Pan C, Cousineau E, Burchfiel B, et al. 2024. Universal manipulation interface:
In-the-wild robot teaching without in-the-wild robots. arXiv preprint arXiv:2402.10329

www.annualreviews.org • The Reality Gap in Robotics 27



95. Chen T, He Z, Ciocarlie M. 2021. Hardware as Policy: Mechanical and Computational Co-
Optimization using Deep Reinforcement Learning. In Conference on Robot Learning

96. Peng XB, Andrychowicz M, Zaremba W, Abbeel P. 2018. Sim-to-real transfer of robotic con-
trol with dynamics randomization. In 2018 IEEE international conference on robotics and
automation (ICRA), pp. 3803–3810. IEEE

97. Tiboni G, Arndt K, Kyrki V. 2023. Dropo: Sim-to-real transfer with offline domain random-
ization. Robotics and Autonomous Systems :104432

98. Muratore F, Ramos F, Turk G, Yu W, Gienger M, Peters J. 2022. Robot learning from ran-
domized simulations: A review. Frontiers in Robotics and AI 9:799893

99. Pinto L, Davidson J, Sukthankar R, Gupta A. 2017. Robust Adversarial Reinforcement Learn-
ing. In Proceedings of the 34th International Conference on Machine Learning, ed. D Precup,
YW Teh, pp. 2817–2826, vol. 70 of Proceedings of Machine Learning Research, pp. 2817–2826

100. Arndt K, Hazara M, Ghadirzadeh A, Kyrki V. 2020. Meta reinforcement learning for sim-to-
real domain adaptation. In 2020 IEEE international conference on robotics and automation
(ICRA), pp. 2725–2731. IEEE

101. Ren AZ, Dai H, Burchfiel B, Majumdar A. 2023. AdaptSim: Task-Driven Simulation Adap-
tation for Sim-to-Real Transfer. In 7th Annual Conference on Robot Learning
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